MATH 220.204, MARCH 29 2019

- 1. (2018 WT2 Final Exam) For each example below, determine whether \mathcal{R} is a function from A to B.
 - $A = \mathbb{R}, B = \mathbb{Z}, \mathcal{R} = \{(x, y) \in \mathbb{R} \times \mathbb{Z} : x = 3y + 1\}$
 - $A = \mathbb{Q}_{\geq 0}, B = \mathbb{R}, \mathcal{R} = \{(x, y) \in \mathbb{Q}_{\geq 0} \times \mathbb{R} : x^2 = y\}$
- 2. (2018 WT2 Final) Consider the relation on \mathbb{Q} defined by $a\mathcal{R}b \iff a-b \in \mathbb{Z}$. (a) Prove that \mathcal{R} is an equivalence relation.
 - (b) Prove that the following statement is false:

$$\forall a, b \in \mathbb{Q}, (a\mathcal{R}b \implies (\forall q \in \mathbb{Q}, (qa)\mathcal{R}(qb))).$$

(c) Prove if $a, b \in \mathbb{Q}$ satisfy the property that $\forall q \in \mathbb{Q}, (qa)\mathcal{R}(qb)$, then a = b.

- 3. Let A, B be nonempty sets. Prove that if $|A| \leq |B|$ then $|\mathcal{P}(A)| \leq |\mathcal{P}(B)|$.
- 4. Let $a, b \in \mathbb{Z}$ be integers such that $a^2 3ab + b^2 = 0$. Prove that a = b = 0. (Hint: Try mod 3.)

5. In this question, you will construct an explicit bijection to prove that the sets

 $\mathcal{P}(\mathbb{N}) = \{ S : S \subseteq \mathbb{N} \} \quad \text{and} \quad (0, 1] = \{ x \in \mathbb{R} : 0 < x \le 1 \}$

have the same cardinality. You can prove each step separately, so you may work on later parts first if you prefer.

(a) Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ denote the set of *finite* subsets of \mathbb{N} . That is, $\mathcal{F} = \{S \subset \mathbb{N} : S \text{ is finite}\}.$

Prove that \mathcal{F} is countable.

- (b) Let $\mathcal{I} = \mathcal{P}(\mathbb{N}) \mathcal{F}$ be the complement of \mathcal{F} . Use the previous part to prove that \mathcal{I} and $\mathcal{P}(\mathbb{N})$ have the same cardinality.
- (c) Let $x \in (0, 1]$. Define a sequence of positive integers $a_1 < a_2 < a_3 < \ldots$ as follows. For every $n \in \mathbb{N}$, a_n is the smallest positive integer such that

$$\frac{1}{2^{a_n}} < x - \frac{1}{2^{a_1}} - \frac{1}{2^{a_2}} - \dots - \frac{1}{2^{a_{n-1}}}.$$

Prove that this construction is well-defined. That is, prove that for every n, there will always be such a positive integer a_n , and also prove that $a_1 < a_2 < a_3 < \ldots$ Conclude that the above procedure defines a function

$$f: (0,1] \to \mathcal{I}, \quad f(x) = \{a_1, a_2, a_3, \ldots\}.$$

(d) Prove that if $f(x) = \{a_1, a_2, a_3, \ldots\}$ with $a_1 < a_2 < a_3 < \ldots$, then $x = \frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \frac{1}{2^{a_3}} + \ldots$

Deduce that f is injective.

(e) Prove that if $x \in (0, 1)$ and $x = \frac{1}{2^{a_1}} + \frac{1}{2^{a_2}} + \frac{1}{2^{a_3}} + \dots$ for some positive integers $a_1 < a_2 < a_3 < \cdots$, then $f(x) = \{a_1, a_2, a_3, \dots\}$. Deduce that f is surjective.