## MATH 220.204, MARCH 292019

1. (2018 WT2 Final Exam) For each example below, determine whether $\mathcal{R}$ is a function from $A$ to $B$.

- $A=\mathbb{R}, B=\mathbb{Z}, \mathcal{R}=\{(x, y) \in \mathbb{R} \times \mathbb{Z}: x=3 y+1\}$
- $A=\mathbb{Q}_{\geq 0}, B=\mathbb{R}, \mathcal{R}=\left\{(x, y) \in \mathbb{Q}_{\geq 0} \times \mathbb{R}: x^{2}=y\right\}$

2. (2018 WT2 Final) Consider the relation on $\mathbb{Q}$ defined by $a \mathcal{R} b \Longleftrightarrow a-b \in \mathbb{Z}$.
(a) Prove that $\mathcal{R}$ is an equivalence relation.
(b) Prove that the following statement is false:

$$
\forall a, b \in \mathbb{Q},(a \mathcal{R} b \Longrightarrow(\forall q \in \mathbb{Q},(q a) \mathcal{R}(q b))) .
$$

(c) Prove if $a, b \in \mathbb{Q}$ satisfy the property that $\forall q \in \mathbb{Q},(q a) \mathcal{R}(q b)$, then $a=b$.
3. Let $A, B$ be nonempty sets. Prove that if $|A| \leq|B|$ then $|\mathcal{P}(A)| \leq|\mathcal{P}(B)|$.
4. Let $a, b \in \mathbb{Z}$ be integers such that $a^{2}-3 a b+b^{2}=0$. Prove that $a=b=0$. (Hint: Try mod 3.)
5. In this question, you will construct an explicit bijection to prove that the sets

$$
\mathcal{P}(\mathbb{N})=\{S: S \subseteq \mathbb{N}\} \quad \text { and } \quad(0,1]=\{x \in \mathbb{R}: 0<x \leq 1\}
$$

have the same cardinality. You can prove each step separately, so you may work on later parts first if you prefer.
(a) Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ denote the set of finite subsets of $\mathbb{N}$. That is,

$$
\mathcal{F}=\{S \subset \mathbb{N}: S \text { is finite }\}
$$

Prove that $\mathcal{F}$ is countable.
(b) Let $\mathcal{I}=\mathcal{P}(\mathbb{N})-\mathcal{F}$ be the complement of $\mathcal{F}$. Use the previous part to prove that $\mathcal{I}$ and $\mathcal{P}(\mathbb{N})$ have the same cardinality.
(c) Let $x \in(0,1]$. Define a sequence of positive integers $a_{1}<a_{2}<a_{3}<\ldots$ as follows. For every $n \in \mathbb{N}, a_{n}$ is the smallest positive integer such that

$$
\frac{1}{2^{a_{n}}}<x-\frac{1}{2^{a_{1}}}-\frac{1}{2^{a_{2}}}-\cdots-\frac{1}{2^{a_{n-1}}} .
$$

Prove that this construction is well-defined. That is, prove that for every $n$, there will always be such a positive integer $a_{n}$, and also prove that $a_{1}<$ $a_{2}<a_{3}<\ldots$. Conclude that the above procedure defines a function

$$
f:(0,1] \rightarrow \mathcal{I}, \quad f(x)=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} .
$$

(d) Prove that if $f(x)=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ with $a_{1}<a_{2}<a_{3}<\ldots$, then

$$
x=\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\frac{1}{2^{a_{3}}}+\ldots
$$

Deduce that $f$ is injective.
(e) Prove that if $x \in(0,1)$ and $x=\frac{1}{2^{a_{1}}}+\frac{1}{2^{a_{2}}}+\frac{1}{2^{a_{3}}}+\ldots$ for some positive integers $a_{1}<a_{2}<a_{3}<\cdots$, then $f(x)=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. Deduce that $f$ is surjective.

